Special Populations:
An Audiologic Approach to Managing Children with Craniofacial Anomalies

Brittney Sprouse, Au.D.
Pediatric Audiologist

2016 Early Hearing Detection & Intervention Conference
Course Objectives:

• Discuss the importance of early audiologic monitoring of children with craniofacial anomalies.

• Evaluate audiologic protocols and recommended guidelines for the management of children with craniofacial anomalies.

• Examine audiologic data collected from children diagnosed with Pierre Robin Sequence (site study).
Cleft Craniofacial Anomalies:

- **Cleft Lip and Cleft Palate**
 - Can occur simultaneously or separately
 - Unilateral or bilateral
 - Occurs in approximately 1 in every 600 births
 - CDC recently estimated:
 - 2,650 born with cleft palate
 - 4,440 born with a cleft lip with or without a cleft palate
 - Audiologic Implication:
 - Susceptible to recurrent hearing loss due to middle ear fluid
Non-Cleft Craniofacial Anomalies:

- Occurs in approximately one in every 1600 births

Microtia:

- Abnormal pinna (small/malformed external ear)
- Four types
 - Ranges from Type 1 (mild) to Type 4 (severe)
- Unilateral (most common) or bilateral
- Occurs in approximately 1–5 in every 10,000 births
- Audiologic Implication:
 - Conductive hearing loss
Non-Cleft Craniofacial Anomalies:

- **Atresia:**
 - Absence or closure of the external ear canal
 - Almost always accompanied by abnormalities of the middle ear bones
 - Unilateral (most common) or bilateral
 - Occurs in approximately 1 in every 10,000–20,000 births
 - Audiologic Implication:
 - Conductive hearing loss
Non-Cleft Craniofacial Anomalies:

- **Ear tags/pits:**
 - Located in front of the ear
 - Unilateral or bilateral / multiple or solitary
 - Occurs in approximately 5-10 in every 1000 births
 - Audiologic Implication:
 - Can be indicative of a syndrome or structural abnormality associated with hearing loss
Non-Cleft Craniofacial Anomalies:

- Malformed Eyes:
 - Hypertelorism: Widely spaced eyes
 - Hypotelorism: Closely spaced eyes
 - Coloboma: Gap in the structure of the eye; can affect the eyelid, iris, retina, or optic nerve
 - Microphthalmia: Small eye globe
 - Anophthalmia: Absence of the eye globe
 - Audiologic Implication: Does not impact hearing; can be indicative of a disease or syndrome associated with hearing loss
Non-Cleft Craniofacial Anomalies:

• Hemifacial Microsomia:
 – The lower half of one side of the face is underdeveloped
 – Varies in severity
 • Unilateral or bilateral
 • Always includes maldevelopment of the ear and the mandible
 – 2nd most common facial anomaly after cleft lip/cleft palate
 – Occurs in approximately 1 in every 3,500–4,500 births
 – Audiologic Implication:
 • Degree of hearing loss depends on the structures of the ear involved
Non-Cleft Craniofacial Anomalies:

- **Craniosynostosis:**
 - Premature fusion of the sutures of the skull bones
 - Can affect one or more of the joints in the skull
 - Often occurs in isolation
 - Associated with a syndrome in 15–40% of patients
 - Occurs in approximately in 1 in every 2,000 births
 - Audiologic Implication:
 - May result in middle and/or inner ear abnormalities
 - Often the syndrome it’s associated with involves hearing loss
Early Hearing Detection and Intervention (EHDI):

• EHDI Components:
 - Newborn Hearing Screening
 - Early Childhood Hearing Screening
 - Diagnostic Audiology
 - Early Intervention
 - Family Support and Partnership
 - Medical Home
 - Data Management
 - Financing & Reimbursements
 - Program Evaluation

• Specialized Populations and EHDI Components:
 - Key component in a diagnostic audiological evaluation of infants and children
 - Risk indicators associated with permanent congenital, delayed-onset, or progressive hearing loss in childhood
 - #5: Craniofacial anomalies including those involving the pinna, ear canal, ear tags, ear pits, and temporal bone anomalies
Early Hearing Detection and Intervention (EHDI):

• **1-3-6 Model**
 - Hearing screening on all infants by **1 month of age**
 - Diagnosis by **3 months of age**
 - Medical, educational, and audiologic intervention **by 6 months of age** to maximize developmental, educational, and communication outcomes

• **Key Program Goal**
 - Provide support and education for families about the importance of detection and treatment of newborn hearing loss
Early Hearing Detection and Intervention (EHDI):

• Craniofacial Anomalies and the 1-3-6 Model
 – How is the 1-3-6 model impacted by a diagnosis of a craniofacial anomaly?
 – How is early audiologic monitoring and management affected?
 – What is the role of the audiologist in this model?
 – How do we implement the components of EHDI?
• Craniofacial Clinic Multidisciplinary Team
 – Plastic and Reconstructive Surgery
 – Neurosurgery *
 – Genetics
 – Otolaryngologist (ENT)
 – Neuroradiology *
 – Ophthalmology *
 – Orthodontics
 – Audiology
 – Speech
 – Social Work *
 – Nurse
 – Child Life *
 – Team Coordinator
University of Chicago Medicine Comer Children’s

- Audiologic Protocol
 - What role does audiology play on the craniofacial clinic team?
 - What was being implemented?
 - What areas could be improved upon?

Searching for Best Practice
Guidelines And Recommendations:

• Audiologic Guidelines:
 - What are the current audiologic guidelines and recommendations?
The American Cleft Palate-Craniofacial Association:

- ACPA Audiologic Guidelines:
 - Recommend individual ear hearing results by 3 months of age
BC Children’s Hospital (2012):

• Current Programs:
 • Three Cleft Palate programs in British Columbia (BC) Canada

• Audiologic guidelines:
 • Wide variability of recommended follow-up
 • No distinct Audiologic protocol
 • ACPA guideline was not being met across BC

• Outcome:
 • Developed the Audiology Clinical Practice Guideline: Cleft Palate/Craniofacial and Syndromic Patients (March 2012)
Audiology Clinical Practice Guideline: Cleft Palate (CP) / Craniofacial (CF) and Syndromic Patients

- Includes recommended care paths specific to the hearing loss risk for each group of children.
- Specific recommendations include:
 - All CP/CF and Syndromic infants in BC will receive a full diagnostic auditory brainstem response testing (ABR) prior to 3 months of age, regardless of their screening outcome.
 - Close periodic follow-up is required in groups at risk for recurrent middle ear disorders.
 - Close periodic follow-up for infants with a permanent hearing loss.
 - Use of high frequency tympanometry for infants under 6 months of age.
 - Assessment of ipsilateral acoustic reflexes using broadband noise stimuli.
Audiology Clinical Practice Guidelines:

- Service Description and Clinical Outcome:
 - Newborn hearing screening
 - Diagnostic ABR obtained prior to 3 months of age
 - Ear specific and frequency specific
 - Air Conduction (500, 2000, 4000 Hz) & Bone Conduction (500 and 1000 Hz)
 - Audiologic assessment at 9 months and annually from 2-6 years of age
 - Tympanometry
 - Ipsilateral acoustic reflexes
 - Otoacoustic emissions
 - Behavioral thresholds (500-6000 Hz bilaterally); age appropriate speech testing
 - If hearing remains unknown after 2 attempts, consider sedated ABR
 - Link with needed community resources
 - Hearing Loss (HL)
 - If a conductive HL is observed at any time, refer to PCP or ENT
 - Audiologic assessments following myringotomy and/or ventilating tubes (within 2-3 months)
 - Permanent HL: audiologic assessments every 6 months for at least one year until stable, then at the discretion of the audiologist for ongoing monitoring
• Audiologic Protocol

 — What role does audiology currently play on the craniofacial clinic team?
 • Increased visibility on the team

 — What is currently being implemented?
 • Protocol changes (consistent follow-up, further specific diagnostic testing)
 • Co-treatment of patients among other disciplines
 • Opportunities to enhance EHDI at our facility

 — What additional areas could be improved upon?
 • Review of outcomes since making changes in protocol
 • Continue to improve the implementation of the 1-3-6 model
 • Continue to reduce lost to follow-up
Craniofacial Syndrome—Pierre Robin Sequence:

- Pierre Robin Syndrome now known as a Sequence
- A set of abnormalities affecting the head and face consisting of:
 - Micrognathia (Small lower jaw/mandible)
 - Glossoptosis (Tongue placed farther back than normal)
 - Cleft palate
 - Respiratory obstruction
- The most common anatomic deviation associated with a non-isolated cleft
- Occurs in approximately in 1 in every 8,500–14,000 births (higher occurrence in twins)
- Can occur in conjunction with other syndromes
 - Stickler syndrome (10–30 %)
 - Velocardiofacial syndrome (10%)
Pierre Robin Sequence Study:

- **Overview of the study:**
 - Retrospective study
 - Multidisciplinary study
 - 34 patients (PRS and non-cleft patients)

- **Audiology:**
 - UNHS screening results
 - Follow-up diagnostic test results
 - Treatment and intervention
Pierre Robin Sequence Study:

PRS STUDY

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>34</td>
</tr>
<tr>
<td>PRS</td>
<td>19</td>
</tr>
<tr>
<td>Other syndrome</td>
<td>5</td>
</tr>
<tr>
<td>Passed UNHS</td>
<td>8</td>
</tr>
<tr>
<td>SNHL</td>
<td>4</td>
</tr>
<tr>
<td>Mixed HL</td>
<td>2</td>
</tr>
<tr>
<td>Permanent CHL</td>
<td>2</td>
</tr>
<tr>
<td>Hx of OM/tubes</td>
<td>15</td>
</tr>
</tbody>
</table>
THANK YOU!

Contact Information:

brittney.sprouse@uchospitals.edu