

Hear This! Lower-cost Automated ABR for Newborn Hearing Screening

Alison Kemph, AuD Andrea Dunn, AuD, PhD March 15, 2016

Disclosures

The presenters have no conflicts of interest related to this presentation

Outline

- Background
- Screening tests and protocols
- Costs and Reimbursement
- Vanderbilt Newborn Nursery Data
- Conclusions

Background

- Joint Committee on Infant Hearing Screening
- Universal Newborn Hearing Screening
 - State of TN: Claire's Law, 2008¹
 - Vanderbilt University Medical Center (VUMC)
 - Audiology: NICU
 - Neonatology: Newborn Nursery
- 2015: Audiology assumes responsibility for hearing screenings in the VUMC newborn nursery

Background

- Vanderbilt Newborn Nursery:
 - 3500 births annually (level I and II nurseries)
 - State- required screenings/ reporting = 24-48 hrs
 - Average discharge age ≈ 59 hrs
- Vanderbilt Bill Wilkerson Center Goals:
 - All Infants screened prior to discharge
 - 2nd screen for refers (time permitting)
 - Meet JCIH benchmarks for refer rate (< 4%)²
 - Create sustainable program

Background

- Screening equipment and protocols
 - 2 main types of hearing screenings

Screening Protocol Considerations

- Cost associated with different screening protocols
 - Equipment, supplies, screen time, etc.
- 2) Potential effect of transducer type on refer rate
 - Influence of OE and ME status on refers

VANDERBILT 🚺 UNIVERSITY

MEDICAL CENTER

Screening Protocols

Protocol	Advantages	Limitations	Equipment	Costs
ABR (rescreen with ABR)	 Lowest refer rate [3- 5] Detects neural loss 	 Longer test time than OAEs only [3- 5] 	ABR	 Higher cost for disposables, equipment and time [3,4] Costs comparable when account for reduced refer and rescreening rate [3]
OAE (rescreen with OAE)	 Shorter test time [4,5] 	 Highest refer rate [3-5] Cannot detect neural loss 	OAEs	 Lower cost for disposables, equipment and time [4,5] Similar to ABR when account for rescreens
2 step: OAE first followed by ABR for refers	 Lower refer rate than OAEs only [3] May detect neural loss 	 Misses most neural loss 	ABR & OAEs	 Depends upon initial refer rate Higher equipment costs (2 versus 1) [5]

Table adapted from American Speech-Language-Hearing Association (ASHA) Newborn Hearing Screening Working Group.

Costs and Reimbursement

- Average screening costs
- Supply + labor
 - Note: rescreen was often only 1 ear
 - OAE / OAE
 - \$16.45
 - ABR / ABR
 - \$25.42
 - OAE / ABR
 - \$23.50

Vohr et al., 2001³

Costs and Reimbursement

- Per patient, per screen supply costs
 OAE
 - Disposable OAE probe: \$1.15
 - AABR
 - Disposable electrodes (\$1.50) + transducer
 - Supra-aural: \$9.42 \$12.95
 - Insert(s): \$1.31 (\$2.62 for 2)
 - No disposables

Costs and Reimbursement

- Although supply costs for ABR and OAE differ, reimbursement is similar
 - Average Medicaid reimbursement
 - AABR: \$56.59
 - OAE: \$45.05
 - Trends for decreasing reimbursement
 - Average decrease of 6% for AABR from 2000-2005

Screening Protocols – *Refer Rate*

- Chang et al. (1993)⁷
 - 41 infants, 82 ears; (62 ears) 76% passed OAE
 - 15% of OAE screening failures were attributed to vernix

*OAE indicates otoacoustic emission. χ^2 =30.84; P<.005.

After cleaning vernix, increase PASS rate 76% → 91%

Screening Protocols-Refer Rate

- Doyle et al. (2000) ⁸
 - 200 babies (400 ears)- otoscopic exam, TM mobility (396), NHS
 - Occluding vernix found in 28% of ears (112)
 - Before vernix removal Following vernix removal \rightarrow 51% pass
 - 12% passed OAE \rightarrow 51% pass
 - 78% passed AABR

 \rightarrow 96% pass

Table 1. Pass/fail rates for EOAE and ABR in 90healthy newborn ears with decreased tympanicmembrane mobility on otoscopic examination

62% of infants with reduced TM mobility that failed OAE passed ABR

	Pass EOAE	Fail EOAE	Total
Pass ABR Fail ABR	29 (32.2%) 1 (1.1%)	56 (62.2%) 4 (4.4%)	85 (94.5%) 5 (5.5%)
TOTAL	30 (33.4%)	60 (66.6%)	90 (100%)

AIMS

- <u>AIMS</u>:
 - 1) Determine whether AABR refer rate differed for insert versus supra-aural earphones.
 - Evaluate cost-effectiveness of 2-stage ABR protocol with insert earphones with respect to other options.

Methods

- Retrospective analysis of clinical data (July Aug 2015); quasiexperimental design*
- Population: 385 infants (770 ears) born in VUMC Newborn Nursery
- Equipment: commercially-available AABR screener with coupling capability for supra-aural and insert earphones
- **Protocol:** 2-step AABR screening
 - 1st screen: min 12 hrs (Vaginal), min 24 hrs (C-section)
 - Rescreen: > 8 hours after 1st screen
 - * Unequal sampling across transducer type

Methods

- 1151 screenings
 - 198 (17%) Supra-aural earphones
 - 953 (83%) Insert earphones

Results

- No significant difference in refer rate found.
 - Supra-aurals = 27% refer, Inserts = 21% refer

Insert earphones are a viable option for AABR.

VANDERBILT VUNIVERSITY MEDICAL CENTER

Results - Descriptives

- Cost: Insert earphones resulted in savings of \$8.11 per baby
 - Estimated annual savings = \$30,882
- Considerations: Supra-aural headphones may be preferable in some situations
 - Very small ear canals can't accommodate 3.5 mm tip

Conclusions

- Refer rate for supra-aural versus insert earphones does not significantly differ.
- Insert earphones provide a lower-cost solution to AABR newborn hearing screening.

Questions?

VANDERBILT VUNIVERSITY MEDICAL CENTER

References

- Tennessee Code Annotated, Title 68, Chapter 5, Part 9, Sections 901-906, amended July 1, 2008
- 2. Joint Committee on Infant Hearing, *Year 2007 Position Statement: Principles and guidelines for early hearing detection and intervention programs.* Pediatrics, 2007. **106**(4): 898-921.
- 3. Vohr, B.R., et al., *Comparison of costs and referral rates of 3 universal newborn hearing screening protocols.* J Pediatr, 2001. **139**(2): p. 238-44.
- 4. Meier, S., et al., *Comparison of currently available devices designed for newborn hearing screening using automated auditory brainstem and/or otoacoustic emission measurements.* International Journal of Pediatric Otorhinolaryngology, 2004. **68**(7): p. 927-934.
- 5. What is the best equipment to use for newborn hearing screening?, in Sound Ideas2001, National Center for Hearing Assessment and and Management
- 6. McManus, M.A., Levtov, R., White, K.R., Forsman, I., Foust, T., & Thompson, M., *Medicaid Reimbursement of Hearing Services for Infants and Young Children*. Pediatrics, 2010. 126(S34).
- 7. Chang, K.W., Vohr, B. R., Norton, S., & Lekas, M.D., *External and middle ear status related to evoked otoacoustic emission in neonates.* Otolaryngology Head and Neck Surgery, 1993.119: p.276-282.
- Doyle, K.J., Rodgers, P., Fujikawa, S., & Newman, E., *External and middle ear effects on infant hearing screening test results*. Otolaryngology Head and Neck Surgery, 2000. 122(4): p:477-481.

Program Goal Metrics

- Goal: Screen all newborns prior to discharge
 - 0 misses in newborn nursery since inception
- Goal: Reduce refer rate

VUMC Refer Rate by Month/Department